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A complete set of f-electron scalar operators 

R C Leavitt 
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Mary- 
land 21218, USA 

Received 30 September 1986 

Abstract. A complete set of scalar effective operators acting within the configurations f” 
has been found. Through the use of Lie groups this set is resolved into orthogonal operators 
which act on N electrons simultaneously. A direct group theoretic correspondence is 
established between N-body electron operators and N-body nuclear states. This connection 
is utilised to expedite the electron classification scheme. Unlike the case of the d shell, 
little simplification occurs as N increases. In addition to the 21 previously established 
operators with N C 3, we have 65 four-body, 107 five-body, 182 six-body and 50 seven-body 
operators. Also, it is shown how the Hermiticity of each operator can be established by 
examining its transformation properties under the Lie group Sp( 14). 

1. Introduction 

In atomic shell theory it is convenient to replace operators of direct physical significance 
by linear combinations Hi that are orthogonal to one another in the following sense: 

C (4 I Hi 14 ’>( 4 ‘I HJ I 4 > = A( Ht 8 ( i, i ). 
The sum runs over all states 4 and 4’ of a given configuration. The relative strengths 
of the operators can be found by performing a least squares fit of the predicted and 
observed energy levels of the configuration. The advantage of using orthogonal 
operators lies in the fact that their associated parameters are independent of one 
another, as long as the energies are linear functions of the parameters. This is 
approximately true in most cases, thus allowing one to unambiguously determine the 
strength of each operator individually. 

If the states of the configuration form the basis for a representation of a Lie group 
G, then as long as the product HiHj does not contain the identity representation of 
G, the operators will be orthogonal (Judd 1984). If one chooses operators that transform 
themselves as irreducible representations Ti and r,, then this condition is assured as 
long as T i  and rj  are distinct and G is self-adjoint. 

Complete sets of orthogonal scalar operators have been found and classified for 
the configurations pd, p’d, pd2 and p3d by Dothe er a1 (1985) and for the configurations 
d N  by Judd and Leavitt (1986). Furthermore, Judd and Suskin (1984) have determined 
all scalar operators in the f shell up to the configuration f3. Hansen et a1 (1985) have 
found it necessary to use four-body operators for the configuration p3d due to the 
inadequacies of the second-order perturbative expansion. In fact, any progression past 
second order for configurations larger than l 3  will necessitate the use of effective 
operators that act upon four or more electrons simultaneously. The purpose of this 
paper is to complete the analysis for the configurations fN. Upon performing the group 
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theoretical analysis a direct correspondence is found between the well established 
group structure of N-body nuclear states (Jahn 1950, Flowers 1952) and our N-body 
electron operators. This connection can be utilised to greatly facilitate the actual 
classification of the orthogonal operators. 

2. Quasispin and isospin 

An effective operator is represented in second-quantised form by a string of N creation 
and N annihilation operators, 

t t  a,ap . .  . aLa,.  . .  amur 

which act upon N electrons simultaneously. Each subscript represents the four quan- 
tum numbers n, I, ms, ml.  The group structure of this operator is determined by the 
coupling of the spin and orbit of the individual creation and annihilation operators. 
The 41+2 components of at transform as the representation of U(41+2) whose 
irreducibility is preserved through the following reduction: 

U(41+2)+Sp(41+2)+ S0,(3)XS0(21+ 1)+SOs(3) XSOL(3). 

Therefore we can choose linear combinations of operators which transform as irreduc- 
ible representations of groups in this chain. The last labels give the total spin S and 
total angular momentum L of the operator. These results are given by Judd (1968). 
As suggested by Judd (1967) we can extend the method by considering creation and 
annihilation operators as two components of a spin-f vector labelled quasispin. If we 
have at and a as creation and annihilation operators with tensorial ranks s and I, then 
let 1 represent the single operator with ranks q, s and I. The two components of this 
tensor are given by 

s tr -p - ,  
6 1 / 2 p y  = a p y  i - 1 , z p y  = a-p-y(-l)  

where now p and y represent ms and ml. The generators for S0,(3) are given by 

Q = -f(21+ 1)1'2(11)(100). 

The 8I+4 components of 1 form the basis ( lo4'+') of S0(81+4) and allow the group 
chain to be extended to 

S0(81+4)+ S0,(3)XSp(41+2). 

Because our N-body operators conserve electron number and hence correspond to the 
M ,  = 0 projection, they do not span the complete representations of S0,(3). Distinc- 
tions at this level do not therefore guarantee the orthogonality of two operators, but 
the quasispin is nonetheless a useful label (Judd and Leavitt 1986). 

Furthermore, the uses of quasispin are expanded by establishing the connection 
between its role in atomic physics and that played by isospin in the nuclear case. In 
the shell theory of nucleons a physical state can be separated into isospin, spin and 
orbital spaces. Nuclear states are formed by the successive application of creation 
operators with ranks of isospin = f, spin = f and orbit = I. We can represent these 
operators as b t .  The tensorial properties of bt are identical to those of the tensors 1. 
When considering nuclear states one generally treats the spin and isospin spaces 
separately from the orbital space. This allows a classification of states according to 
the transformation properties of the supermultiplet group U(4) and the standard orbital 
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group S 0 ( 2 1 +  1) (Flowers 1952). However, this classification is evidently more general 
than what is available for the N-body operators since U(4) x S 0 ( 2 1 +  1 )  is not a subgroup 
of S0(81+4).  This is easily witnessed by observing the generators for U(4), which, 
by ordering the ranks in sequence isospin, spin and orbit, appear as 

( b t b ) ( m ) ,  (b tb) (Im) ,  (btb)(o'o) , (btb)("o) 

These types of operators are not available in the electronic quasispin scheme since the 
distinction between the creation and annihilation operators constitutes the addition of 
an implicit fourth label. 

3. Generators and group structure 

In nuclear theory, quasispin does not appear to be as useful as it is in atomic theory. 
We can consider the two vectors bt and b as two components of a spin-f vector, but 
the analogous quasispin generators cannot be formed. We have 

(66)(1000) = 0 

where now the ranks run q, t, s and 1. For that matter, if we treat quasispin, isospin 
and spin on an equal footing, we cannot form a vector in any one space while leaving 
the other ranks zero. This results from the fact that 

( 6 6 ) ( Q T S L )  = 0 

if Q + T + S + L is odd. This puzzle is cleared up by observing again the generators 
for U(4). In this notation they become 

(&&)()'0000', (66)(1100), (i&)(1010) 1 ( ~ ~ ) ~ O l l O )  

with the total quasispin projection M ,  set equal to zero. Evidently the second and 
third operators represent the isospin and spin generators that produce the SOT(3) x 
S0, (3)  subgroup of U(4). These generators act as vectors in the spin and isospin 
spaces alone only if they operate on states built up entirely from quasispin projections 
of +f (or -:), otherwise the tensor properties are disturbed by the non-zero quasispin 
rank. Since nuclear states are constructed from a number of creation operators alone, 
these labels (spin and isospin) are perfectly legitimate. 

Now we are in a position to construct a direct analogy between nuclear states and 
atomic operators. If we carry along all four labels in both cases, we find that the roles 
of isospin and quasispin are merely reversed between the two. Whereas isospin, spin 
and orbit are useful labels for states of maximum quasispin projection, we now find 
that quasispin, spin and orbit are valid for operators of maximum isospin projection. 
Isospin then enters into atomic physics as an additional label that is used to construct 
our generators, and is then projected out by considering only the m, = 4 states. Of 
course, this additional label need not be called isospin, as its accrued meaning does 
not apply to electrons. However, its initial sense of like spin is still relevant. 

The 161 + 8 elements 6 transform as the vector representation of the group SO( 161 + 
8). We can branch immediately to U(81+4) which is the parent group of both the 
S0(81+4) group containing all electron operators, and the U(4) x S 0 ( 2 1 +  1 )  product 
which represents all nuclear states. U(4) x S 0 ( 2 1 +  1 )  can also be considered a label 
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for electron operators where now U(4) is a supermultiplet of spin and quasispin. The 
two alternative branchings are 

SO( 16I+ 8) + S 0 ( 8 I +  4) + S0,(3) x Sp(41+ 2) + S0,(3) x S0,(3) x S0(21+ 1) 

S 0 ( 1 6 I + 8 ) + U ( 8 1 + 4 ) + U ( 4 ) ~ S 0 ( 2 ~ + 1 ) + S 0 ~ ( 3 ) X S 0 ~ ( 3 ) ~ S 0 ( 2 ~ + 1 ) .  

Now we are in a position to resolve an interesting puzzle discussed by Judd and Leavitt 
(1986). An N-body operator transforms as ( 12N04’+2-2N ) under operations of the 
group S0(8 l+  4). When performing the reduction to S0,(3) x Sp(41+ 2) it is sufficient 
to consider the reduction of the same representation of U(81+4) to S0,(3) x U(41+2), 
and then continue the reduction to Sp(41+2). This result was somewhat surprising as 
the generators of U(41+2) and U(81+4) could not be formed from the standard 
operators Q. However, with the introduction of the additional isospin label, the group 
generators are well defined and the groups exist as an alternative reduction of U(81+4): 

U(81+4)+S00(3)  X U,r(41+2)+SO,(3)~Sp(41+2).  

The U,(41+ 2 )  group is labelled by the subscript 5 to distinguish it from the U(41+ 2 )  
whose vector representation is spanned by the operators at.  This second group, call 
it U,(41+2), discussed by Judd (1968), serves to distinguish N and ”bodied operators 
for N # N ’ ,  and has generators which do not commute with the quasispin generators. 
Table 1 contains a complete list of the relevant generators. 

Table 1. The groups and their generators. 

Group Generators Number of generators 

(81+ 4)( 161+ 7 )  
(81 + 3)(8/ + 5) 
(41+2)(8[+3) 
(41+ 1)(41+3) 
(411- 1)(41+3) 
(21+ 1)(41+3) 
1(21+ 1 )  
15 
15 
3 
3 

4. Operator labels 

While it is clear that a relationship exists between nuclear states and electron ffective 
operators, it remains to be seen how this connection can be put to use. As explained 
by Flowers (1952), the following chain of labels [A]TM#MsWLML can be used to 
represent the states of I N  nucleons. [ A ]  stands for a representation of U(4) and W 
for one of S0(21+ 1). In the case of I = f a n  additional label for the exceptional group 
G2 can be inserted between SO(7) and S0,(3). We can of course attach these same 
labels to our N-body operators acting within the configurations I N  by substituting Q 
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and M ,  for T and MT.  However, since the electron conserving operators ( M ,  = 0) 
do not span the representations for U(4) and S0,(3),  distinctions at these levels do 
not guarantee the orthogonality of different operators. Similarly we can define operators 
according to the group chain 

S O ( ~ ~ + ~ ) + S O ~ ( ~ ) X S P ( ~ ~ + ~ ) + S O ~ ( ~ ) X S O ~ ( ~ )  xS0(21+1).  
In this case S0(81+4) and S0,(3) are not spanned by the operators either. However, 
quasispin is useful in determining relationships between the operator matrix elements 
within different configurations (Judd and Leavitt 1986). 

The best classification scheme starts with the U,(41+ 2) subgroup of S0(81+4). 
Operators with M ,  = 0 completely span representations of U(41+2) of the type 
[1N04'+2-2N - 1 "1. Thus of all the operators contained in ( 12N04'+2-2N ) of S0(81+4) 
only those contained in the subrepresentation [ 1 N04'+2-2N - l N ]  are orthogonal to the 
fewer-body operators established from the smaller representations of S 0 ( 8 1 +  4) (Judd 
1968). 

The connection to nuclear states does not prove useful in the classification of atomic 
operators, but does serve as an efficient computational tool when one works out the 
conventional classification. To demonstrate the following technique, we choose 1 to 
be 3, and work out the complete set of operators for the configurations fN. The method 
is valid for any I. 

To generate a complete set of N-body operators one can begin with the representa- 
tion ( 1 2 N O ' 4 - 2 N )  of S0(28),  perform the branching to SOQ(3)xSp(14) and then 
continue the reduction of Sp(14) to SOS(3)xS0(7) .  The first reduction is easily 
accomplished by the aforementioned method of considering U(28) + S0,(3) x U,( 14). 
In this case we have 

I. [12N028-2N] + 1[2N014-N] +3[2N-l12013-N I + ,  . .+2N+1[12NoI4-2N 

The superscripts preceding the representations on the right stand for 2Q+1. The 
branching from U( 14) to Sp( 14) can be read off directly from table (2-15 of Wybourne 
(1970). Since [ 12N014-2N] is still irreducible upon branching to SO(28) the reduction 
is complete. Table 2 contains the results. 

The reduction of Sp( 14) to SOS(3) x SO(7) proves more involved. The branchings 
can be found using the techniques described by Wybourne (1970), but the method 
becomes excessively cumbersome and complicated for large values of N. Fortunately, 
reference to the nuclear classifications greatly simplifies the problem. The branching 

U(28) + U(4) X SO(7) + SOQ(3) x SOs(3) x SO(7) 
is much easier to obtain. In fact, the complete branching is given by Flowers (1952). 
The final representations will be identical to those established by the alternative group 
chain. Furthermore we have already established the reduction to S0,(3) x Sp( 14). 
Consider the reduction from [ 12N028-2N] of U(28). The product S0,(3) x U( 14) 
contains only a single U(14) representation for each value of quasispin. Therefore 
upon reducing to Sp( 14) there will.be only one symplectic label of order 2N for each 
quasispin value. All other representations are of order 2 N  - 2 or less. Assume that 
the branchings from Sp( 14) have already been found for these lesser representations. 
This procedure allows one to work progressively up from N = 0. One can now subtract 
off the reductions of these lesser representations from the S0,(3) x SOS(3) x SO(7) 
labels given by Flowers (1952). The remaining representations can be uniquely deter- 
mined as coming from the single symplectic label of order 2N associated with each 
value of quasispin. 
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Table 2. Branching rules for SO(28) + S0,(3)  x Sp( 14). 

(1608) 

( 1806) 

~ 

0 
0 
1 
0 
1 
2 
0 
1 
2 
3 
0 
1 
2 
3 
4 
0 
1 
2 
3 
4 
5 
0 
1 

(07) 
(207 
(07)(1205) 

(120~)(20~)(21~0~)  
(07)( 1205)(220') 

(07)( 120s)( 1403) 
(206)(2 1204)(2304) 
(07)( 120s)2( I4O3)(2 1 204)(220s)(221 IO3)  

( 1 '05)( I4O3)(2O6)(2 1204)(2 I4O2) 
(07)( 120s)( 1403)( I6O) 
(07)( 1'05)( 1403)(2205)(221203)(2403) 
(1  'Os)( 1403)(206)(21204)2(2 I4O2)(2' 1 203)(2304)(23 1 '02) 

( I2O5)( 1403)( 1 60)(206)( 2 1204)(2 I4O2)(2 16) 
(O7)( l2OS)(  1403)( I6O) 
(206)(2 1 204)(2 1402)(2304)(23 I2O2)(2'O2) 
(07)( 1 
( 1 205)( I4O3)'( 160)(206)( 2 1 204)2( 21402)2(216)( 221 203)(22 140)(2304)( 23 1 202)(23 14) 
(07)( I2Os)'( 1403)2( 160)2(2 1 '04)(2 I4O2)(2 16)(2205)(221 203)(22 140) 
( 1 205)( I4O3)( I60)(2O6)(21 204)( 21402) 
(07)( 120s)( 1403) 
(07)( 1205)( 1403)( 160)(2205)(221 203)(22 140)(2403)(241 20)(260) 
( I2O5)( 1403)( I60)(2O6)( 2 1 204)2( 2 I4O2)'(2l6)( 221 203)(22 140)(2304) 

(07)( 120s)2( 1403)3( 160)'(2 I2O4)(2 1402)2(2 16)(220s)(221203)2(22 140)2( 23 I2O2)( 2403)(23 14)( 241 20) 

(07)( i20s)2( 1403)2( i60)(2 i204)(2 1402)(220s)(221203)(22 1 ~ 0 )  

1403)2( 160)(2 1204)(21402)(2205)(22 1 203)2(22 140)(23 1202)(2403)(241 20) 

(231202)2( 23 14)(24120)(2502)(2s 12) 

( 1205)( 1403)2( 1 ~ 0 ) ~ ( 2 0 ~ ) ( 2 1 ~ 0 ~ ) ~ ( 2  1402)2(2 16)(221203)(22 1 ~ o ) ( 2 ~ o ~ ) ( 2 ~ 1 ~ o ~ )  
(07)( ~ ~ o ~ ) ~ (  1403)2( Po)( 21204)(21402)(220s)(221 203) 

(07)(1205) 

(1 'Os)( l4O3)(2O6)(21 204) 

(206)(2 1 204)(2 1402)(216)(2304)(23 1 202)(23 14)(2s02)(2s1 2)(27) 
(07)( 1 20s)2( 1403)2( 160)2(21204)(21402)(216)(2205)( 22 1203)2( 22140)2(23 I2O2) 

( I2O5)( 1403)2( 160)2(206)(21204)2(21402)3(2 16)(22 1203)( 22140)2(2304)(23 1202)2( 23 14)(24120)(2502) 
(07)( 120')2( 1403)? 160)2(2 1 204)(21402)2(2 16)(2205)(22 1203)2(22 140)(23 1 202)(2403) 

(07)( 1205)2( 1403)(21204)(2205) 

( 23 14)(2403)(24120)2(25 12)(260) 

( i205)( 1403y( 160)(206)(21204)2(21402)(22 I 203)(2304) 

(120S)(206) 
(07) 

The remaining reduction to total S and total L give the tensor properties of the 
effective operators. These can be written as T(SL)' where S and L are the spin and 
orbital ranks and J is the total angular momentum. T("'')o represents operators that 
are scalar in both S and L and thus reproduce the effects of the Coulomb interaction 
taken to arbitrary orders of perturbation. T'")' give the spin-orbit and spin-other-orbit 
type interactions. Restricting oneself to a specific type of operator further simplifies 
the procedure. Considering a total spin of rank k allows one to deal only with the 
S = k parts of the products from SOQ(3) x SOS(3)  x S0(7),  allowing one to ascertain 
this part of the branching without examining the other irrelevant pieces. As an example 
the spin-scalar part of the reduction of Sp( 14) to SOS(3) x SO(7) is given in table 3. 
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Table 3. Branching rules for Sp( 14) + SOS(3) x SO(7). Spin = 0 part only. 

~~ ~ ~~ 

(0') (OOo) 
(i205) (200) 
( i403) (220) 
(1% (222) 
(207 (110) 
(21204) ( 1 lo)( 21 1 )( 3 10) 
(2 i402) (211)(221)(321) 
(216) (221)(322) 
(2205) 
(221203) (1 11)(200)(210)(211)(220)(222)(310)(311)(321)(420) 
Q2140) (111)(210)(220)(221)(222)(311)(320)(321)(322)(331)(422) 
(z304) (100)(110)(211)(221)(310)(330)(411) 
Q3l2O2) ( 100)(110)(210)(211)2(221)2(300)(310)(311)(320) (321)2(322)(330)(332)(411)(421)(431) 
(23 i4) (210)(211)(221)(311)(320)(321)(322)(331)(332)(421)(432) 
~ ~ 0 3 )  (WO)( 1 1 1 )( 200)( 210)( 220)2( 222)( 3 1 1 )( 321 )( 33 1)(400)(410)(420)(422)( 440) 
(24120) ( 1 1 1 )( 200)(210)( 21 1 )( 220)( 221 )( 222)( 3 lo)( 3 1 1 )2( 320)( 321 )2 (  322)( 33 1 )2 (  332)( 333)( 410) 

(420)(421)(422)( 430)(43 1 )( 432)( 442) 
(2502) (110)(211)(221)(300)(310)(320)(321)(322)(330)(332)(411)(421)(431)(433)(441) 
(2512) (1 10)(211)(221)(310)(320)(321)(322)(330)(331)(332)(411)(421)(431)(432)(433)(441)(443) 
(2% (OOo)(200)(220)(222)(311)(321)(331)(333)(40)(420)(422)(430)(432)(~0)(442)(~) 
(2') (310)(322)(431)(443) 

(OOO)( 11 1 )( 200)( 220)( 400) 

5. Hermiticity 

There is one additional constraint on the operators. Only Hermitian operators are of 
physical interest. The Hermiticity can be established on the symplectic level by the 
following scheme. The presentation that is given here generalises the analysis given 
for f3 (Judd and Suskin 1984, § 5)  and corrects a garbled argument (Judd and Leavitt 
1986, 0 4 )  which, nevertheless, led to no subsequent error. To examine N-body 
orthogonal operators we want only to consider those contained in the representation 
[1N0'4-2N - l N ]  of U,(14). All operators of this form can be found by taking the 
product of [lNO'4-N] and [ O ' 4 - N - 1 N ]  and subtracting out the terms such as 
[ lMO'4-2M - l M ]  with M < N. On the symplectic level this corresponds to taking the 
product ( 1  NO'4-N) x ( 1  NO'4-N) .  The Hermitian and antiHermitian operators are related 
to the symmetric and antisymmetric parts of this product. 

Consider operators of the type aLpuys belonging to [lo4' - 13 of U(41+2). (These 
are just the standard s and 1 creation and annihilation operators.) To be Hermitian 
aLpa,, must occur with the same sign as its adjoint, u/ ,aUp .  In the more extended 
vector notation these two terms become 

s + f - y - - 6  s + f - a - p  
~ 1 , 2 a p ~ - 1 , 2 - y - - b ( - 1 )  + 61/2ys6-1/2-a-p(-1) 

Alone, these terms correspond to neither the symmetric nor antisymmetric part of the 
product (10") x ( lo2'). However, one typically considers operators coupled to some 
final ranks in S and L, or in J. Consider the operator 

A = ( a t a ) F ) ' .  
By uncoupling, taking the adjoint and recoupling, one finds 

At = ( - 1 ) S + L + J - M  ( a  +a ) ?'&IJ. 
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E 
5 
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v 
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c 

E 
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: E 

5 
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2 

2, 
0 
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h 

2 
I 

0 
c 

z, 
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E 
E 
2 

h 

0 

2, 
v 
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2 
I 

0 
c 

z, 
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- 
2 

1 
- 
5 
9- 
0 
2 - v 
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Contained within A are the two terms d l , 2 n p d - 1 / 2 y 8  and d l ~ 2 y 8 d - l 1 2 , p  with identical 
coupling coefficients except for a phase difference of (-l)l+s+L. If S+ L is even, this 
implies an antisymmetric product, while S + L odd gives a symmetric product. In the 
event that M is 0, the constraint of Hermiticity forces S + L+ J to be even. Therefore 
if J is even, the Hermitian operators fall into the antisymmetric products. If J is odd, 
the Hermitian operators are contained in the symmetric products. The situation is 
reversed for antiHermitian operators. If M is not zero the symmetry of the product 
no longer specifies the Hermiticity. This analysis is easily generalised to include N-body 
operators coupled to a final rank J. In this case, if N + J is even the Hermitian operators 
fall into the symmetric part of the product (1N02f+'-N ) x (1N02L+1-N ). If N + J  is odd 
the Hermitian operators are found in the antisymmetric part. Table 4 yields the 
decomposition of [ 1 NO'4-2N - l N ]  into the symmetric and antisymmetric pieces of 
Sp(14) and the Hermitian and antiHermitian parts for operators of the form T(kk)o.  
As previously noted by Judd and Leavitt (1986) N-body operators for N > 21 + 1 need 
not be considered. 

6. f-electron scalar operators 

We are now in a position to classify all scalar operators available within the f shell. 
This gives a scheme for reproducing the effects of the Coulomb operator to an arbitrary 
order of perturbation theory. Since the group U,(14) used to classify the operators 
does not commute with quasispin, the quasispin ranks are not necessarily well defined. 
By examining the branching SO(28) + S0,(3) x Sp( 14) one can determine the available 
quasispin ranks for each symplectic label. Furthermore, use can be made of the theorem 
established by Judd and Leavitt (1986) that for a Hermitian N-body orthogonal operator 
the quasispin must have the same parity as N. This further restricts the available 
quasispin values for each operator. Table 5 presents a complete list of N-body scalar 
operators for N less than five. The operator nomenclature is similar to that used by 
Judd and Leavitt (1986). Although the zero-, two- and three-body operators given are 
the same as those presented by Judd and Suskin (1984), one should note that the 
operator names are slightly different. Judd and Suskin (1984) also give the connection 
between these operators and those appearing earlier in the literature. If needed, the 
five-, six- or seven-body operators can be easily read off from tables 3 and 4. 

There are several interesting points. One is that for N greater than three the group 
chain is not sufficient to uniquely specify each operator. For example, when N = 4 
two separate pairs of operators occur with identical labels. In practice this causes little 
problem as the operators can be algebraically orthogonalised before being put to use. 
In no case were there more than two operators with the same labels. It was hoped 
that a general group theoretic scheme could be uniformly applied to eliminate these 
multiplicities. However, the duplications occur at almost all levels for the many-body 
operators. (They occur at the Sp(14), S0(7 ) ,  G, and SOJ3) levels.) Therefore a 
simple method of resolving these multiplicities appears unlikely. 

Since these operators represent all possible scalar interactions within each configur- 
ation, the total number of operators acting between states of a given configuration 
must be equal to the number of available matrix elements. The number of matrix 
elements can be easily counted from the list of states provided by Nielson and Koster 
(1963), providing an independent check of the classification scheme. Table 6 presents 
the total number of Hermitian scalar f-electron operators and the number of multi- 
plicities that occur at each level. 
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Table 5. N-electron T‘w’o operators in the f shell. 

e0 
e1 
e2 
e3 
e4 

e5 

4 
t2  

t3 

t4 

t 5  

t 7  

t8 

t9 

t I 0  

t l l  

t12  

e6 

t6 

t13 

t14 

f l  

f2 

f3  

f4 

f5 

f7 

fll 

f9 

f10 

f l  I 

f12 

f l 3  

f l 5  

f l 7  

f l 8  

f6 

f14 

f16 

f19 

f2 0 

f2 I 

f22 

f23 

f 2 4  

f25 

f26 

f27 

f2 8 

f3 0 

f29 

f31 

f32 

f3 3 

0 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

(0’) 
(0’) 
(1403) 

(2205) 
(2205) 
(2205) 
(220~) 
(1403) 

W O )  
( 1 60) 
(221203) 
( 22 1 203) 
(221203) 
(221203) 
(221203) 
(22 1 203) 
(221203) 
(221203) 
(22 1 203) 
( 22 1 203) 
(22 1 203) 
(07) 
0403), 

O60) 
(1%) 
( 2 1 ~ 0 ~ )  
( 2 1 ~ 0 ~ )  
(2205) 
(2205) 
(2205) 
(2205) 
(221203) 
(221203) 
(221203) 
(221203) 
(22 1 203) 
(22 1 203) 
(221203) 
(221203) 
(221203) 
(22 1 203) 
(221203) 
(22140) 
(22140) 
(22140) 
(22140) 
(22140) 
(22140) 
(22 1 40) 
(22140) 
(22140) 
(22140) 
(22 1 40) 
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Table 5. (continued) 

Name N SP( 14) SOU) GZ S o ~ ( 3 )  

4 f34 
f3 5 4 
f36 4 
f3 7 

f3 8 4 
4 9  
fa 4 

f42 4 
f43 
f44 4 
f45 

f47 4 
f48 4 
f49 4 
f5 0 4 
f5 I 4 
f5 2 4 
fs 3 4 
f5 4 

f5 5 4 
f56 4 
f5 7 4 
f 5 8 4 
f5 9 4 
f60 4 
f6 I 4 
f62 4 
f63 4 
f64 4 
f65 4 

4 

4 

4 

4 

4 
4 

f4 1 

f46 

4 

2 
2 
2 
2 
2 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Table 6. The number of N-body scalar operators. 

N Number of operators Multiplicities 

1 
0 
6 

14 
65 

107 
182 
50 
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It is important to note that one can just as easily classify non-scalar effective 
operators, such as those that reproduce any crystal-field effects. These operators would 
appear as Tboqk) where the spin rank is zero and k and q give the orbital rank and 
orientation. These operators would be useful for considering the crystal-field interac- 
tions as combined with other scalar perturbations. However, the efficacy of this 
approach is limited by serious multiplicity problems as well as by the difficulty of 
dealing with a quite large set of operators. For example, in the f shell there are 1 1  
two-body, 106 three-body and 333 four-body operators with the rank T E ) .  The sheer 
number of available operators would make this approach impractical when considering 
effects smaller than second order. 

7. Conclusions 

Before using these operators, it is necessary to evaluate their matrix elements within 
the configurations fN. Judd and Suskin (1984) have given the matrix elements up to 
f'. It is straightforward but tedious to evaluate the matrix elements for higher N. A 
matrix element of any operator can be expressed as a product of generalised Clebsch- 
Gordan coefficients or isoscalar factors times a reduced matrix element at the U(14) 
level. Judd (1963) presents a method for evaluating these coefficients. Judd and Leavitt 
(1986), however, describe a simpler technique. Given the matrix elements of all 
operators in f n - I ,  one can evaluate the matrix elements of all operators acting on n - 1 
or fewer electrons within the configuration f" by using the equation 

( In+ I Hi I In+') = [ n / ( n - N )  I C ( +{ I4 ) ( I n  4 I Hi I - ' 4 O( 4 'I> +') 
A6' 

where H,  is an N-body operator and the coefficients of fractional parentage (+{I4) 
are given by Nielson and Koster (1963). The matrix elements of the n-body operators 
can be found by requiring orthogonality with the fewer-body operators. This method 
is facilitated by using known proportionalities between operators with some (but not 
all) identical labels. In this manner one could extend the results of Judd and Suskin 
(1984) in a stepwise fashion to higher N. 

While the four-body operators should prove useful in configurations larger than 
f3, the effects of the higher-order operators will most likely be small compared to those 
given by the spin-orbit, spin-other-orbit, and spin-spin interactions. It would then 
be necessary to classify and examine operators of the type T'")' and T'22'o. In these 
cases the situation is more complicated due to the increased number of operators and 
group label multiplicities. 

These orthogonal operators present a convenient scheme for reproducing the effects 
of physical interactions. Once a fit of the experimental data has been performed, one 
can extract explicit physical information from these operators. Linear combinations 
of orthogonal operators will be needed to give the effect of any one physical process, 
and in general not all operators will be needed at each level of perturbation. In third 
order only a subset of the four-body operators will contribute. One can perform the 
perturbation, relate the physical operators to the effective operators and thus extract 
the size of the associated radial contributions. The effective operator approach thus 
provides a coherent scheme for generating physical information from an experimental 
fit. 
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